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Abstract—A complete solution is given for the first time to the title problem. Explicit expressions
are derived for the field of stresses and displacement in a transversely isotropic space weakened by
an external circular crack and subjected to two antisymmetrically applied concentrated forces. The
method is based on the new results in potential theory obtained by the author earlier. The presented
results may be used as Green's functions for a general case of antisymmetric loading so that the
complete solution can be presented in quadratures.

INTRODUCTION

The external circular crack may be perceived as two elastic half-spaces connected in the
plane = = 0 by a circular domain which is called hereafter the crack neck. Ufliund (1967)
was, probably, the first to consider the equilibrium of an isotropic elastic body weakened
by an external circular crack and subjected to the action of two antisymmetric normal
forces by an integral transform method. The same problem for the casc of transversely
isotropic body was solved in Fabrikant (1971). All these solutions define the elastic ficld
in the planc = = 0 only. We call a solution complete when the explicit expressions are given
for the stresses and displacements all over the elastic space. One may argue that since the
stresses exerted in the crack neck are known, we can substitute them into the Boussinesq
point force solution (which is well known, for example, see Fabrikant, 1970) and obtain
the complete solution in quadratures. Theoretically, this can be done, but practically, this
solution would be of little use since it would require double integration, with the integrand
being singular. The computing time for this procedure would be quite significant, and its
accuracy would be very doubtful. This is the main reason why, to the best of my knowledge,
nobody has tried so far to obtain a complete solution, even in the case of an isotropic body.
On the other hand, knowledge of the complete solution is of great interest since it is essential
for consideration of more complicated problems. For example, using linear superposition
of the solutions for symmetric and antisymmetric loading, we can obtain the solution to
the problem of one-sided loading of a crack.

The complete solution has become possible due to the new results in potential theory
obtained by the author, Fabrikant (1989). The expressions for the stresses in the crack neck
are fed in the point force solution, with one important distinction : the integrals are computed
in elementary functions and lead to remarkably simple and elementary expressions.

THEORY

Consider a transversely isotropic clastic body which is characterized by five elastic
constants A, defining the following stress—strain relationships:

du, du, ow
Oy =All_(i;+('41l_2Abo) ‘é}—:'*'An*a“:“-
du, du, ow
g, = (AII_ZAG(»)E;'*‘AIIa_y'{”AIJ'é;v
Ou, du, ow
0. = AIJaT+Al]'5;+AJJE:—v
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The equilibrium equations are:

de, Ot Ot.. ét,, Co. Ot ft., Ot Co.
T =0, S =0 SR =0 )
éx Oy ez éx &y &z éx oy &z

Substitution of (1} in (2} yields:

ot u‘ &u, ou, cu Ow
Ay 5= axt + Ao 57 a7 %"A«ir'*'(f*n «‘*66) - “*”('4'3+A“)6 xés =9
u, &’u, &*u, ‘g i
*‘i&&a 44y 5 A, 3:5 +{dn—- 3&5} '{"(4;3’?:‘5;&}@ o =0,
v w w Cu | O,
Ay [ﬁ\ + e ]+A\\ A=t +(‘4“+A”)[’ ‘*+618] 0O ®

Introducing complex tangential displacements # = u, +in,, and # = u,—iu, will allow us to
reduce the number of equations in {3} by one, and to rewrite these equations in a more
compact manner, namely,

3

& .- ow
§(A §t -+ f!ﬁh}Ai‘+{g3J {:3:5 + _E(If it Ws‘f{,@)!‘t'“'f‘(ff 13 -+ ff.m}i\ -{1—: = (}‘

o w
. + (A‘.Mw!“) (i\:M»I\u) = 0. @

A:NAW + A n (7_,

Here the following differentind operators were used

¥ i
a° a8 a &
A=z54 5 A= —+i-, {3
dxt 0yt ox  dy

and the overbar indicates the complex conjugate value. Note also that A = AA. One can
verify that eqns (4) can be satisficd by

3{' 0F,
w= AEHFiF), w2 (6)
where ufl three functions £, satis{y the egn (Elliott, 1948):
6'5“
AF, 5 —F =0, fork=1,23 N

and the values of my and y, are related by the following expressions (Elliott, 1948):

Astm{d+As) g A 5y

= =yi, fork=1,2: v, ={(4/4ds)"%. (8
An PaAast Ay +Ass Vi ¥y = {Asa/ Ass) 63

Introducing the notation =, = 2/y,. for £ = 1, 2, 3, we may call function F, = F(x, p, 2}
harmonic. Note the property mym, = [, which seems to have escaped the attention of
previous rescarchers, and which will help us to simplify various expressions to follow. The
other elastic constants which will be used throughout the paper are:
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G, =B+77:H, G:=B-77:H,

_ Gutr)4n a___(AnAn)”:—An B = 73 )
2n(A, Ay —ATy)’ A(i+y2) 2nA 4,
Introduce the following inplane stress components :
o, = 0'_(+0'y, 0, = a.r—ay+2irx_v~ .= T:x+ir_v:- (lo)
This will simplify expressions (1). namely
- ow
g, = (A”—Aﬁs)(ﬂll+All)+2A|3’a—_, g2 =2A(,(,/\u.
0 d
a==§A.,(Au+Aa)+A,,5‘{’, .= Ag [a—’_‘mw]. (1)

We have now only four components of stress, instead of six, as it was in (1). The substitution
of (6) in (11) yields:

2

0. - B bl b
gy, = 24"««5“5 i = (U +m)ys3)Fy + [ = (1 +my)y3) Fa

-
-

0, = 2A6,,A2(F| +['.z+iF))‘

- 5 g
g, = Ay, Pyt ((F+m piF i+ (L +my)yiFy] = —ALA[(L+m)F +(1+m,)F),

)
= AuA (; [(L+m)F, + (1 +ma)Fy+iF)]. (12)

Here we used the fact that each F, satisties eqn (7), and the relation:
Anvi—Anmy = Ayl +my), (for k = 1,2) which is an immediate consequence of (8).
Expressions (6) and (12) give a gencral solution, expressed in terms of three harmonic
functions F,. It is very attractive to express cach function F, through just one harmonic
function as follows :

F(x.y,2) = e F(x, p,24),

where =, = 2/y,, and ¢, is an as yet unknown complex constant. As we shall see further,
this is indeed possible. All the results obtained in the paper are valid for isotropic solids,
provided that we take

ey H_l--vz =2y
Nh=r2=7=1 = RE " 1—2(]‘:‘6.
1 +v Q-=v)(1+v) v(l +v)
ﬂ_—_nE' Gi=—p—, CG:= - (13)

where E is the elastic modulus, and v is Poisson's coefficient.
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k4

Fig. L. The cruck geometry.

We vonsider a transversely isotropic elastic space weakened by an external circular
crack of radius a in the plane = = 0 (Fig. 1). Let two point forces # be applied to the crack
faces antisymmetrically in the Oz direction at the points with cylindrical coordinates
(r. 4. 0%) and {r, . 07). The problem. due to anlisymmetric loading. can be reduced to
that of a half-space = > 0, with the boundary conditions at the plane =0

=1, forgp<a 0% <32n;
=0, for0gp<a 0L <2n;
o= PS{p=r.d—f)ip. foragp<o, 0L <2n;
=i, forggpo, BLH<In {13

Here o % wgr, and t= w1, a5 they are defined in (12). 1t iy known {Fabrikant,
1989) that in the case of a transversely isotropiv elustic half-space subjected to u general
concentriated foree with the components T, 7, and £ thecomplote solution can be expressed
through the three potential funciions:

ﬁﬁh

Fy = ";""w“‘”‘l‘ [5?2{53{1 *Ail}*“f)m (Ry+2)]
1
Hys
Fy= 5 [y (R + AR+ Pin (Ra 2k
F,= iﬂm_;f}.m(ﬂxf*;\i\), (15)
’ 4y } )

Here { po. ¢y} i the point of the boundary where the concentrited force is applied ;

HE

L =gz, Re=1p+pi—2Zppocos (P—Gay+:i1¥3, fork=123
XJ(:) = T[: iﬂ {RG +:) - Ru}‘ ?ﬂ = T: + ‘Tr\ Rﬂ = [P' +ﬂ5 ha ﬁﬂ‘ﬁ?u Cos (¢ e (bb) "h":z] ‘]2'
Substitution of {13)-{15] in {8} yiclds

(16}
_n [T ¢T ] Hy: f
“’"4::A¢,[R{+’R3(R,+:3)3 ”*"my-l 3 R
T

}} R(R~£~» }
i

T
Ry
i o H
; ’EE{{ R¥%§‘{g¥ vz?fj gifgs‘f’-;}} an
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w=H{1(Tq+Tq)[ L + e }
2 (m —DR(R, +z,) (my=DR:(R;+:7)

+p[ m_ ]}.(w>
(mi—DR, T (m:—DR;

Here
q = pe —pyeo. (19

Expressions (17) and (18) simplify for the case whenz =0

T Tq* P
u={G|E+%G: R ‘Hig’ (20)
T P
w=H1J7(—>+H—. n
q R

Here 4 is the real part sign: H, 2, G, and G, are defined by (9). and
R=1[p +pi—=2ppycos (Pp—¢dy]"". (22)

Expression (20) can be used for the integral equation formulation of the problem. The
governing integral equation will take the form (Fabrikant, 1971)

(; e t(p .q‘) ) (;3 in "(ff(p .(/, ) ’IGP
2l J:n J: ' "R " po dpo dpy + 2 0 b R“‘ " podpy dpy = pe P —re W

) -

(23)

Here © stands for 7, as it was defined in (10). This equation has been solved in Fabrikant
(1971), and its exact solution reads

2PH~ | gy
Wpd) = = n’Gre (@ —p*)'? ‘I‘_:’[l * (f:?> sin”" \/:jl (24)

D)

Here J = pe */(re ). Expressions (15) can be used to obtain formulae for the potential
functions in the case of a distributed loading. This will lead to computation of various
integrals involving (24) and some functions of distance between points (see, for example,
(17) and (18)). The simplest integral to compute is

I = J‘ J. r,,(’{;z:fé‘).) po dpa dépe. (25)
0 0 0

Here t is defined by (24), and R, is given by (16). Let us make use of the integral
representation (Fabrikant, 1989)

,__l_- _ gj“’"/_ (1%(\:} ¢"¢ ) [Ig(x)"'xlll/z dux
R, —ﬂ 0 o ' 0 (I':—-\'z)”:[[%(-‘)—If(,\‘)]’

Hi(p+0 +7" = [(p =) +37 "3},
= %{[(IH’.\:)Z+:2]"’3+[(p_x)l_*_::]u:}‘
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. [—k
MR = e Tk cos y (26)

and the series expansion for (24), namely.

2PHxy & Tn+1) (poe %)

WP dy) = — - :G| "gn F(n+1;2) ire"'w)"‘ [(a:_‘p‘l’)l :

27

Substitution of (26) and (27) in (25) yields. after integration with respect to ¢,

o 8PHX < [(n+1) j q J Vi) =X Ui (x)e ™ /p)" dix
T TRTG, Tt 12 ey ) PP L (0 S @ —p) - )

Changing the order of integration and consequent integration with respect to p,, gives

_ 4PHx ¢ Fi+1) J (30 =1 Uie " /p) dx

‘‘‘‘‘ 9
' G T+ 12)(re )"+ o NHO S ) 28)

The summation in (28) can be performed, with the result

_ 1’”1/“77 11(\) Gin - 1(\) [[ (x) = x? ]\ ‘ dv
TG, f [H[lf—lf(.vn“"" ( b )][/ - B@IB =6 &P

By introducing a new variable y = /,(x), x = p[1 +23(p°> =], the integral (29) will take
y £ b b i g

the form
4P Hapett 1 ¥ Y dy
- . 1+ o , 8in I T N
TZ(ll 0 (/’ - b (l""}") "(’7")")

Throughout this paper the abbreviations /, and /, denote {,(a) and /,(a) respectively. The
last integral can be computed in an clementary manner, and the final result is

4PHz N AN R l(h)]
= 2G g I:sm </:> (o1 sin AL (30)

Here ¢ is defined by (19), and b = pre® . In order to find the main potential functions
(15), we need to compute the integral

(0 ] 1] d )
I = J f gr(po. )lj: dp. r/)( » an
() -

This integral can be computed from (30) by means of application of the operator A to both

sides of (30) and consequent integration of the result twice with respect to z. Application
of A to (30) yiclds the following integral

.[» J:: R‘:'r(p(,.ff)(,)p‘, dpo dpy = — nG (1,—1 )(b'—l) H‘( «_-h)'nﬁs'" 5/

3

Integration of both sides of (32) with respect to = results in
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Mg _ 4PHx ! _,( a )
J; J; Ro('R'u"‘““+:)‘T(Po~¢o)Podpnd‘bn'- - G, {(b:_a:)lz[[‘m (b‘ & )I

(@’ =1)! 2) o x*sinT! (/b) dx }
—tan" | e 5 TS sersle (3
tan ((4‘)'—-@!’)i ) o (@ —x ) pT—x)It (33)

Various formulae from the Appendix were used in the intermediary transformations. Yet
another integration of (33) with respect to - gives

g 4PHx - » a
J; V[) R0+-r(p() @yIpo dp, dipy = G, {(bl___al)l’l [tan ((h:—-az)‘ :)

—~tan™! wi*lf)l:) w(p:—l':)” sin”'([—')
+ (b?._al')l 2 (hl’_!%)! 2 b
o xTsinTt (x/b) dx o xsinT! (x/b) dx
bt g 3 3 w’ ki 3 T 3 ¥ ) 3 3 K . 3(
+ J:, (@*=x)' (b =) Jy (pr=x) - (34

The last result allows us to define the potential functions (15) as follows:

Fo- PH, { 2y

“'n ) F/(-l)]'*‘ln(k +:z 1)}

m,-»l

. Pity, My -
I, = - {"" [_I(:_V)“"A/(:_‘)]'*‘h\ (I(:'*':_v)}.

my—1 n(r,
. i Plx ..
=y ) =) 3
I, e f =)=/ (=] (35)

Here the notation was introduced

Ry =[p* +pi—2ppocos (b= + 7" = = sy fork = 1,2, 3;

e L Y L (Y| =t
“"'(bl—aﬂ'-‘[“"' <(b~‘-a-‘)“) tan ((b —a) )T Ty G

- " xtsin '(\h)dv o xsin ‘(x/!;)d\
_‘:; (u” --\ ) 2 —" ) j; (P g )1 (i)' v )‘,‘3'. (36)

Now the complete solution can be obtained by substitution of (35)-(36) into (6) and (12).
The result is

| ..H, P 7
u= PHZ l{— 7 “ALS(z t)+_/( s+ T }

oy — "G, Ri(Ri +3,)
7Pl
+ i A.x.z(li AU (=) -j (-3)) D
: " ey, @ 1
" pl{kguﬂk | {~ T!G“k “:-k [/ (-k)+j (-k)] * Rk}. (38)

6, = 2PHA, Y

= ny —1

= +m)/n)’ { -"35; 172

G, 03 J{f(-k)+f (=)]- 1} 39

k
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- : | ZHI”,'[}": - - r /kq ( Rk+~k)}
0’_ —PHAG(,I‘EIMI‘_-_‘ { T[G| A U(-k)+f(-x)] Rk(Rk+-k)
2PH2 =~
+*——G‘_/\ U(-w)"/(;';)]‘
173

Ik Hzl’ll' E__ }
Z( 1) { =G, Lf(-k)+/(-k)]+R; ,

77‘(/1-/ )=

_ P Y JHayyy, i o ~ i}
—27"-'('1'1 72 kZl( D {n'/'kGl A(’:U(_k)+j(~k)]+Rk‘
PHx

+';7§;A *'[/(x)~J( Il

Here are the explicit expressions for various derivatives of f which will be needed

o 1 . _l< a o ((1:*1,2)':>
g-@g$yimn @ﬁ?ﬁi—ml Bizahy

! \ sin '(\//v)d\
* 0 (U “‘\ )I' ( - X" )
L Y CA S Ve i (1)
A/-(i[un (12) h? —-I)""m »ll

L Let(p? —[l)l' /’()‘M"{ o I,_ _[ ~l(fl ~ )
A= /)(5 —l,) TR g ("/,'2_”"‘:”)1/2 tan (A —ar)'?

G Il"')] a;__gziz—ﬁ_)_'f} _‘i,'f x! sin '(\/5) dx
—tan ((/-7 —u ) I + ) 3 + ) [((l g )(5 g )];(-

0/ _ L(p? —-[l)!/’ B | »ﬁ{!_w‘ . l<,.!‘>—
o' T T i< =1) _l+ GHIE s I

aM=umme s U ermmet \B) )
DA @D pe? o poe™ | e (pi =) sin t(Li/b)
M =T RIET BIn Y BRI T i SR Sy =T

/)oe'd’u“ Po c"bﬂ ( {I o (“‘ "‘I:)1 ‘)
- [)-:(F_a ) (F ;/ﬂ tan~ (51 5 ] —tan (‘h- —al )

“"j x* sin - (\/h)dr
" [(ll —-X )(h‘ ]‘”

(40)

(41)

(42)

(43)

(44)

(45)

(40)

(47

(43)



External crack under concentrated loading 351

sin"(g>-wsin-'(ﬁ)]_"M(P:—If)l:{l-'.f.l’(az—lf)
. L) B -1 b YRR PR AT

sin”! (I—')
b [ pla’ —1.) } 49
+(b2_l%)l,' —+ b- 2 * ( )

ap IPHE 3 . a - (a:—lf)'”)] a(56* —2a*)
s '(5’~a3)*{(5”-—a2)“[“‘“ ((F )”’)'“‘" ((F—cf)"’2 T

Ca —lf)”(sb“-—zaz—slf)} _ 2p0e O (pT 1) [1_. N p(a’—lf)]
(6°—15)° & -1} Lz=1)

Ol (p -1 )“’[ li=p® 2Aa’—1) Li(p?=1i)sin”! (11/5)]
EG-DHGE-HL p* 7 F-F T @ -EF -

3ze™ J"' x®sin~' (x/h) dx
+ < 3 TR
pt Jo (@ =x)VhT X

Z
<
[}

]

AN S)

(50)

Formulae (37)~(50) represent the main new results of this paper. One can notice that some
of the derivatives still contain uncomputed integrals, but the main advantage is that those
integrals are single, rather than double, and that their integrands are non-singular which
makes them casy to compute by any standard subroutine.

The main results are valid for isotropic bodics as well, provided that we substitute the
clastic constants and compute the limits according to (13). These limits may be computed
by using the L'Hopital rule. The following scheme should be used :

N I A R R N N N
‘.'J?..L,,l_. +,;;:;.] =G50 257G (51)
. m, f(z)) nhj(-,) .
,..'.'.5‘3..,[,;,,;.“““ ] /("z'(l""“f ). (52)
. [u—u+m,)m/vl>1/( ) [l—(l+mz)(v;/7:)31f(::)]
7rmir et my,—1 my—1

_22A @+

2(1—v) (53
, PSE) v SGE) L =2 +2/(2)
i —llfm~ t |:r—n,—l + m,—1 :I - 2(1—v) ! (34)
. m, f(zy) my [(2; (1=2v)f(z)==/"(z)
 Jim [4,:,"(;‘,;‘. oty (m,_u] TP (33)
Here the following relationships were used
i =1, i [a'"‘] (1 (56)
_fﬁl)THm, =1, ;-.J;Tu , (1—=v),

and the symbol (*) indicates differentiation with respect to z. The field of displacements in
the case of isotropy will take the form
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=40

2.0 !gussi:-- 1 |

-9.50 728

I

-1.50 % a
~3.20-~2.00-1.00 0.00 1.0¢ 2.02 3.90 4.0 S.00 6.%2 7.00

Fig. 2. The field of tangential displucements.

u= '2;% {k% - RL:(E:"; + 72;(1 AL — %12{%—) AT
2 Laasen. o
n(2—v) 0z
W= l,: P {nl(: E :, (= =W DT @+ D+ Ol + ,{;2»’3 + ,;}
(58)
The derivation of the ficld of stresses Tor the case of isotropy is left to the reader.

Ttis of interest to investigate the influence of crack neck on the licld of displacements.
This can be done by comparison of (57) -(58) with the case of an clastic half-space subjected
to a normal concentrated load P which is given by the last two terms in (57)-(58). As we
can see, the most difference will be achicved in the case of Poisson coetlicient v = 0, while
in the other extreme, namely, v = 1/2, both solutions coincide. The computations were
made forthecasev =0, 0= 2,r = 3,4 =0, ¢ = 0. The valuc of u* = (u/a)(2rE)/[P(1 + v)]
versus pla for = =0, 2=0.5 and z =1 is given in Fig. 2. The negative value of p is
understood as its vitlue for ¢ = r. A similar value of w* = (w/a)(2nE)/[P(1 +v)] is presented
in Fig. 3. In both figures, the solid line curves correspond to formulae (57) and (58)

0.5

-0 N Y
2.00

1.50

1.00

/
09.920 pla
~3.20 ~2.00 -1.090 0.90 1.90 2,090 3.00 4.00 S.Q0 ©6.90 7.00

Fig. 3. The ficld of normal displacements.
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respectively, while the dotted line curves describe the field in an elastic half-space subjected
to a normal load only. As we can see, the field of normal displacements is practically
unaffected even in this extreme case. while the field of tangential displacements differs
significantly in the vicinity of the applied force and the crack neck. All the dotted curves in
Fig. 2 go above the relevant solid line curves. A similar picture is observed in Fig. 3 for
positive p, and it becomes reverse for p negative.
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APPENDIX

We present here some nuathematical results used in various transformations throughout this paper. The main
propertics of £, and {; are:

L, sap, L+l =a’+pP 427, (Al

(R R e A (e D AR T AR RS-/ ,
(@ = IV ) =z (= p?) R pt =) = 2 (A2)

o, _ =, (T/‘ o
R L A R P
o, ul.-—pl p(a -13) ¢I ;:I~—ul, (/.-a)
L s P Tl plama) A3
o T BRI TLAISEy ap T ETE TLATSD (Ad)
Here are some derivatives used in the paper:
) L hii-ph?
Cpmaryr 2 Bz) (A%)
¢z -1
wl 12
AU =gy = 0N « (AS)
[

oL L, -[u a? +2:'—p) I]

—(li-a)' = - A6
Apliza) UiZa sy (A6)
ot %

:f—;u::—an'*-“(‘? ~~‘--’« (13436 = 4p%), (AT)
[ j
LpP=IHt?
atoppyr < eI (A8)
ez l‘-ll
PYRENENE
BT B ot i Ll (A9)
[
e . pelli—at (4227 = pY)
(=1 = — 10
Azt =1) @1 T (A10)
h M l LN
M —-gij)v—(Jp —1 =33, (ALD)
[ / )
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- ﬁ _ —Il(lé_a.‘,l.‘ -
Asin <1:)‘ ATy

Jig IE- 312 . . .
A% sin! <13) - "—i%;‘——ﬂ]—f—[sp-lg+p~1;_6u~p~+:m.
2 M U]

¢t AN ¢ (@ =1\ ca* 2+ 227 - p%) = 1]
&M\ T TE A )T TS TaE-n

a . _\fa\_ (a*=1;)"? _pe"(a:—lf)": - s
A—__sm (—.)-—/\< IEpE: BT [3:+17—4a%).

Here we present some indefinite integrals of expressions containing {, and /,.

15 -2t

p_:l [+I: :)l:
2 +2 "[! (1"'” I'

J'(I§-—uz)"’ dz = (@*=1})"*

R, : rnandit2l? . e
J‘(lg-u‘)' Hids = _‘,(,,--(;)'r~,LT,‘A‘,, +atpin [y +(3=-pH)"7,
1y Wit 0 a
J(u —H'id = T (li-a®) "+ 5 sin ! 1)

Ba

j(u-'_l;')u/fd: - - Ui+ pitpt = a?) sin l(/")'

fli((l:“lf)l dz o= a(ly —a®) P Qa H D+ pT sin ! <IH)

IH CPA LS '
o onll g 22 - AL
J(l: a’) /::d- a(u’ —17) [l I5p: s J

(@ =1hHv . fa
f g T L)
@=1" 1 fadizadtt L fa
Bai=y T IH ML
J‘sin"(;i)d:=:sin"(;i)—(u!—lf)""+aln[/,+(1§—-p3)‘3],

I NN AR H
ssinm ' =) dr = Qa2 4 pYysin (1) +ioad) T T
1, 1, 4a

(A12)

(Al3)

(AlY)

(A1S5)

(Al6)

(A7)

(A1B)

(A19)

(A20)

(A21)

(A22)

(A23)

(A24)

(A25)

(A26)

(A27)

f:’ sin”! (Iu) dz = |=* sin "' (u) + 8 =D +6p + 80 =2 = La(Bp  + 2 Inll, + (11 -p°) ]

I8

(A28)

The integration in (A18)-(A28) was performed by parts, with a consequent change of variables:

D= (@ =) (P =), o = (13 =aP) U - pY) L



